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a b s t r a c t

Experiments with two diffusion-weighting periods applied successively in a single experiment, so-called
double-wave-vector (DWV) diffusion-weighting experiments, are a promising tool for the investigation
of material or tissue structure on a microscopic level, e.g. to determine cell or compartment sizes or to
detect pore or cell anisotropy. However, the theoretical descriptions presented so far for experiments that
aim to investigate the microscopic anisotropy with a long mixing time between the two diffusion weigh-
tings, are limited to certain wave vector orientations, specific pore shapes, and macroscopically isotropic
samples. Here, the signal equations for fully restricted diffusion are re-investigated in more detail.
A general description of the signal behavior for arbitrary wave vector directions, pore or cell shapes,
and orientation distributions of the pores or cells is obtained that involves a fourth-order tensor
approach. From these equations, a rotationally invariant measure of the microscopic anisotropy, termed
MA, is derived that yields information complementary to that of the (macroscopic) anisotropy measures
of standard diffusion-tensor acquisitions. Furthermore, the detailed angular modulation for arbitrary cell
shapes with an isotropic orientation distribution is derived. Numerical simulations of the MR signal with
a Monte-Carlo algorithms confirm the theoretical considerations. The extended theoretical description
and the introduction of a reliable measure of the microscopic anisotropy may help to improve the appli-
cability and reliability of corresponding experiments.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Experiments where multiple diffusion-weighting periods are
applied successively in a single acquisition were initially consid-
ered by Mitra [1] theoretically. First experiments were performed
by Cory et al. [2] and Callaghan and Manz [3] to assess pore eccen-
tricity and the correlation of spin motion in different directions,
respectively.

To analyze the basic principles of such experiments, Mitra con-
sidered fully restricted diffusion in isolated pores with an isotropic
orientation distribution for the case of (i) an infinitesimal and (ii)
an infinite mixing time between the diffusion-weighting periods.
Thereby, he focused on two diffusion-weighting periods in an
experiment. Because for short gradient pulses a diffusion-weight-
ing period is equivalent to a scatter event [4] that can be character-
ized by a wave vector, such experiments often are referred to as
two- or double-wave-vector (DWV) diffusion-weighting experi-
ments in contrast to standard, single-wave-vector experiments [5].
ll rights reserved.
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For a vanishing mixing time, Mitra found a cosine-shaped signal
modulation when varying the angle between the two wave vectors
with a maximum for the antiparallel orientation [1]. Thereby, the
modulation amplitude increases with the effective pore or cell size
which allows to estimate cell or compartment sizes. Experimental
demonstrations of this effect have been reported for biological
samples [6], extracted spinal cord [6,7], and in the human brain
in vivo [8,9]. Signal equations [10] and numerical simulations
[7,11] for simple pore shapes and finite timing parameters were
presented recently as well as an extended theoretical framework
for arbitrary orientation distributions and pore shapes involving
a rank-2 tensor model [12]. Furthermore, it has been shown that
applying multiple concatenations of the two wave vectors yields
an increased modulation amplitude [13] which may help to
improve the detectability and accuracy of the size estimation, in
particular on whole-body MR systems with their limited gradient
amplitudes.

For long mixing times, the signal is expected to differ between
parallel and orthogonal wave vector orientations but, in contrast
to the experiment with short mixing time, only for anisotropic
pores or cells [1]. Thus, microscopic diffusion anisotropy can be
detected in samples that macroscopically appear isotropic, e.g.
because of an isotropic orientation distribution of the cells. This
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is of particular interest because standard single-wave-vector
experiments fail to resolve this anisotropy. The microscopic anisot-
ropy effect has been demonstrated experimentally in yeast cells
[14], liquid crystals [15], plant tissues [16], the gray matter of mon-
key brain in vitro [17] and pig spinal cord ex vivo [18]. Recently,
numerical simulations to investigate the influence of finite timing
parameters have been presented [11].

The basic signal equation underlying the anisotropy effect were
reported by Mitra [1]. He argued that the effect is of fourth order in
the wave vector’s amplitude without evaluating details. Cheng and
Cory [14] calculated the signal for parallel and orthogonal wave
vector orientations in a sample with isotropically oriented ellip-
soids. They could conclude that the signal for orthogonal wave vec-
tor orientations is reduced compared to the parallel orientation.
Recently, signal equation calculations [10,19] as well as numerical
simulations [11] were performed for simple pore shapes and finite
values of the timing parameters, like the mixing and diffusion time.

All these approaches either assume an isotropic orientation dis-
tribution or a specific shape of the pores or cells. Thus, they are of
limited value in biological tissue where the cell shape is irregular
or unknown and the orientation distribution may deviate from
an isotropic one. In particular the latter problem hampers the
applicability because in general the signal will not only depend
on the relative angle between the two wave vectors but also on
their absolute orientations with respect to the cells’ orientation
distribution. This could be solved by performing acquisitions with
wave vectors covering the full angular range isotropically. How-
ever, this would also include the orthogonal wave vector orienta-
tion, i.e. for each orientation of the first wave vector the second
one needs to sample a perpendicularly oriented circle, which
would yield excessive acquisition times.

In this work, the basic signal equation of fully restricted diffu-
sion provided by Mitra for DWV experiments with long mixing
times [1] is re-investigated in detail. A general description of the
signal involving a fourth-order tensor equation is derived that is
valid for any orientation distribution and shape of the cells and
arbitrary wave vector directions. From this result, a rotationally
invariant measure of the microscopic anisotropy, termed MA, is de-
rived that reliably describes the diffusion anisotropy on a micro-
scopic scale, and yields information complementary to that of the
anisotropy measures of standard, single-wave-vector diffusion-
tensor experiments. It is defined on the basis of the elements of
the fourth-order tensor of the signal equation and can be deter-
mined experimentally by a measurement with parallel and orthog-
onal wave vector orientations. Furthermore, an analytical
expression for the signal modulation for an isotropic orientation
distribution of the pores or cells is calculated. The validity of the
theoretical considerations is confirmed with numerical simulations
using a Monte-Carlo algorithm.
g2 g2g1 g1

δΔδ τm

π/2
π π

Gradients

RF/Signal

Fig. 1. Example of a basic pulse sequence for a double-wave-vector (DWV)
diffusion-weighting experiment. It should be noted that the important feature,
two diffusion-weighting periods applied successively in a single experiment, can be
realized with various pulse sequences and is not limited to the double-spin–echo
preparation shown here.
2. Theory

In this section, the basic equation provided by Mitra [1] is
re-investigated in detail. First, the results of previous works
derived for isotropic orientation distributions are shortly summa-
rized (Section 2.1). The analytical calculations start with a Taylor
expansion up to fourth order of the signal equation derived by
Mitra [1] (Section 2.2). After re-writing this expression using the
modified Voigt notation (Section 2.3), a tensor equation of the
signal is obtained that is valid for arbitrary wave vector and pore
orientation distributions and for any pore shape (Section 2.4). In
the following sections, an invariant is derived from the tensor
elements that can be determined experimentally with a few mea-
surements with parallel and orthogonal wave vector orientations
(Section 2.5). This invariant is shown to depend on the eccentricity
or anisotropy of the pores and can be used to define a pore-size
independent measure MA of the microscopic anisotropy (Sec-
tion 2.6). In case of a single pore orientation, the MA is in line with
anisotropy measures known from standard diffusion tensor imag-
ing (Section 2.7). But for arbitrary orientation distributions, the MA
still reflects the anisotropy property present on a microscopic, i.e.
pore, level (Section 2.8) and, thus, yields information complemen-
tary to that of the standard diffusion tensor anisotropies (Sec-
tion 2.9). Finally, the general signal expression for an isotropic
orientation distribution that can be derived from the tensor equa-
tion is presented and its consistency with previously reported
results is shown (Section 2.10).

2.1. Results of previous works

The NMR signal M observed in a DWV diffusion-weighting
experiment (Fig. 1) with wave vectors q1 and q2 was first evaluated
by Mitra [1]. He considered fully restricted diffusion in isolated
pores or cells with an isotropic orientation distribution. Further-
more, he assumed that the pulse durations di are short ðdi ! 0Þ
and the diffusion times Di are large compared to sD (Di � sD)
which is the time a spin typically needs to diffuse across a pore,
i.e. sD ¼ a2

2D with the pore diameter a and the diffusion coefficient
D. For the case that the mixing time sm between the two wave vec-
tors is also large compared to sD ðsm � sDÞ, he obtained

Mðq1;q2Þ /
XN

j¼1

~qjðq1Þ
�� ��2 ~qjðq2Þ

�� ��2 ð1Þ

where ~qjðqÞ is the Fourier transformation of the spin density distri-
bution qj in pore j

~qjðqÞ ¼
Z

pore j
qjðrÞeiqr dr ð2Þ

Mitra found that Eq. (1) bears an interesting feature [1]. For
spherical pores or cells, the signal solely depends on the magnitude
of the wave vectors but not on their orientations. In contrast, the
signal observed for non-spherical, e.g. ellipsoidal, pores or cells de-
pends on the relative angle h between the two wave vectors q1 and
q2 which arises because the product of both contributions in Eq. (1)
is taken before the summation over all pores is performed. As a
consequence, samples with spherical and non-spherical pores or
cells can be distinguished with the DWV experiment although both
samples would appear isotropic in a standard, single-wave-vector
experiment. In other words, a DWV experiment with long mixing
time is able to detect a diffusion anisotropy present on a micro-
scopic level in a macroscopically isotropic sample.

The angular dependency of the signal for anisotropic pores is
expected to appear in the fourth order of the wave vector ampli-
tude q according to [1]. A detailed analysis for ellipsoidal pores
was presented by Cheng and Cory who calculated the signals for
parallel and orthogonal wave vector orientations ðq ¼ q1 ¼ q2Þ
and obtained [14]
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MjjðqÞ / 1� c2q2 þ c4q4

M?ðqÞ / 1� d2q2 þ d4q4
ð3Þ

with

c2 ¼ d2 ¼
4

15
a2 þ 2

15
b2

c4 � d4 ¼
2

375
a2 � b2
� �2

ð4Þ

where a and b are the semiaxes of the spheroidal pores.
In order to obtain a more general description of the signal, Eq.

(1) needs to be re-investigated. A Taylor expansion is performed
up to fourth order where the signal difference between parallel
and orthogonal wave vector orientations appears for anisotropic
pores.

2.2. Taylor expansion

Initially, an ensemble of identical pores or cells with a single
orientation is considered which simplifies Eq. (1) to

Mðq1;q2Þ / ~qðq1Þj j2 ~qðq2Þj j2 ð5Þ

where the pore index has been dropped for the sake of clarity.
Because the expansion of Eq. (5) to fourth order can be composed
of the terms obtained for the expansion of ~q to the same order,
~q will be considered first.

It is given by

~qðqÞ ¼ 1þ iqT
Z

pore
qðrÞrdr� 1

2

X3

j;k¼1

qjqk

Z
pore

qðrÞrjrk dr

� i
6

X3

j;k;l¼1

qjqkql

Z
pore

qðrÞrjrkrl drþ 1
24

X3

j;k;l;m¼1

qjqkqlqm

�
Z

pore
qðrÞrjrkrlrm drþ Oðq5Þ ð6Þ

where the pore or cell volume V has been set to V ¼ 1 for simplicity.
If the pore’s center of gravity is chosen as the origin of the coordi-
nate system the first order term vanishes and

~qðqÞ ¼ 1� 1
2

X3

j;k¼1

qjqk

Z
pore

qðrÞrjrk dr� i
6

X3

j;k;l¼1

qjqkql

�
Z

pore
qðrÞrjrkrl drþ 1

24

X3

j;k;l;m¼1

qjqkqlqm

�
Z

pore
qðrÞrjrkrlrm drþ Oðq5Þ ð7Þ

is obtained. Using the rank-2 (3 � 3) tensor R [12] and defining a
rank-4 (3 � 3 � 3 � 3) tensor S with elements

Rjk ¼
Z

pore
qðrÞrjrk dr

Sjklm ¼
Z

pore
qðrÞrjrkrlrm dr

ð8Þ

Eq. (7) can be re-written to

~qðqÞ ¼ 1� 1
2

qT Rq� i
6

X3

j;k;l¼1

qjqkql

Z
pore

qðrÞrjrkrl drþ 1
24

�
X3

j;k;l;m¼1

qjqkqlqmSjklm þ Oðq5Þ ð9Þ

Using these results, the Taylor expansion of j~qðqÞj2 can be calcu-
lated to
~qðqÞj j2 ¼ ~qðqÞ~q�ðqÞ

¼ 1� qT Rqþ 1
4
ðqT RqÞ2 þ 1

12

X3

j;k;l;m¼1

qjqkqlqmSjklm þ Oðq6Þ ð10Þ

where the (imaginary) third order term of Eq. (9) has disappeared.
Thus, the expansion of Eq. (5) up to fourth order yields

Mðq1;q2Þ / 1�
X2

m¼1

qT
m Rqm þ

1
4

X2

m¼1

qT
m Rqm

� �2

þ qT
1Rq1

� �
qT

2Rq2

� �
þ 1

12

X2

m¼1

�
X3

j;k;l;m¼1

qm;jqm;kqm;lqm;mSjklm þ Oðq6Þ ð11Þ

where Greek and Latin indexes refer to the wave vector number and
Cartesian coordinates, respectively, and qm;j is the jth component of
wave vector qm . Beside the leading constant, Eq. (11) contains, in the
order of appearance, (i) the second order term of ~q and (ii) its
square (fourth order) for each wave vector, (iii) a mixed product
of the second order terms of ~q between the two wave vectors
(fourth order) that represents the interaction between the two
wave vectors, and (iv) the fourth order term of ~q for each wave
vector.

Eq. (11) represents the desired general signal equation but is
not very handy. However, it can be re-written into a more conve-
nient expression using the modified Voigt notation.

2.3. Modified Voigt notation

The modified Voigt notation (also known as Voigt–Mandel
notation) [20] will be used for the further investigations of
Eq. (11). It allows to reduce the dimension of symmetric rank-4
tensors in order to yield a handier notation. For instance, a general
rank-4 tensor has 81 elements but S whose elements Sjklm accord-
ing to Eq. (8) are invariant under any permutation of the indices,
has only 15 independent elements. It therefore can be expressed
as a two-dimensional matrix in an appropriately chosen vector
space.

Defining a six element vector ~q with

~q ¼

q2
1

q2
2

q2
3

q1q2

q1q3

q2q3

0BBBBBBBB@

1CCCCCCCCA
ð12Þ

for each wave vector qm allows to re-write the terms of the last sum
in Eq. (11) according to

1
12

X3

j;k;l;m¼1

qjqkqlqmSjklm ¼
1

12
~qTeS~q ð13Þ

for each wave vector with

eS ¼
S1111 S1122 S1133 2S1112 2S1113 2S1123

S1122 S2222 S2233 2S1222 2S1223 2S2223

S1133 S2233 S3333 2S1233 2S1333 2S2333

2S1112 2S1222 2S1233 4S1122 4S1123 4S1223

2S1113 2S1223 2S1333 4S1123 4S1133 4S1233

2S1123 2S2223 2S2333 4S1223 4S1233 4S2233

0BBBBBBBB@

1CCCCCCCCA
ð14Þ

where a symmetric design was chosen and the factors reflect the
multiplicity of the index combinations. Note that the position of
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most elements is not unambiguously determined, only the elements
Siiii have a well-defined position within the matrix.

Analogously, the squares and the mixed product of the second
order terms that contribute to the fourth order term, can be ex-
pressed as

1
4

qT Rq
� �2

¼ 1
4

~qT eR~q ð15Þ

and

qT
1Rq1

� �
qT

2Rq2

� �
¼ ~qT

1
eR~q2; ð16Þ

respectively, with

eR ¼
R2

11 R11R22 R11R33 2R11R12 2R11R13 2R11R23

R11R22 R2
22 R22R33 2R12R22 2R13R22 2R22R23

R11R33 R22R33 R2
33 2R12R33 2R13R33 2R23R33

2R11R12 2R12R22 2R12R33 4R2
12 4R12R13 4R12R23

2R11R13 2R13R22 2R13R33 4R12R13 4R2
13 4R13R23

2R11R23 2R22R23 2R23R33 4R12R23 4R13R23 4R2
23

0BBBBBBBBBB@

1CCCCCCCCCCA
:

ð17ÞeR has 21 different elements and, as eS, was set-up symmetrically.
The elements are products of the six independent elements of R
but it should be emphasized that this only holds for a single pore
orientation as will be seen later.

Thus, Eq. (11) can be re-written to

Mðq1;q2Þ / 1�
X2

m¼1

qT
m Rqm þ

1
4

X2

m¼1

~qT
m
eR~qm þ ~qT

1
eR~q2 þ

1
12

�
X2

m¼1

~qT
m
eS~qm ð18Þ

which, e.g. avoids rank-4 terms. A further simplification can be
achieved when combining the two vectors qm as well as the two vec-
tors ~qm as it is shown in the next section.

2.4. Tensor equation

Concatenating the qm and the ~qm vectors to single vectors
Q ¼ ðqT

1;q
T
2Þ

T and eQ ¼ ~qT
1; ~qT

2

� �T , respectively, and using

~qT
1
eR~q2 ¼ ~qT

2
eR~q1 ¼

1
2

~qT
1
eR~q2 þ ~qT

2
eR~q1

� �
ð19Þ

yields the final tensor equation

MðQ Þ / 1� 1
2

Q T TaQ þ 1
12
eQ T eU eQ ð20Þ

with the second order (6 � 6) tensor

Ta ¼
2R 0
0 2R

 !
ð21Þ

and the fourth-order (12 � 12) tensor

eU ¼ eS þ 3eR 6eR
6eR eS þ 3eR

 !
ð22Þ

respectively, which both are symmetric.
Ta can be seen in analogy to the tensor T that was introduced to

describe the second order signal decay in DWV experiments with a
vanishing mixing time [12] but, although it is based on the same
six independent elements, has a slightly different definition.

With Eq. (20), a general expression for the MR signal in a DWV
experiment with long mixing time has been derived that conve-
niently describes the signal for any wave vector direction and cell
shape and that also holds for arbitrary orientation distributions of
the cells as will be shown below. The off-diagonal eR matrices that
describe the mixed product of both wave vectors represent the
interaction term that causes the modulation of the signal with
the angle between the two wave vectors for anisotropic cells. This
will also be seen in more detail later.

Although Eq. (20) is quite clear, it does not provide an apparent
approach to estimate the pore anisotropy. A solution to this prob-
lem is presented in the following sections.

2.5. Rotational invariant and its experimental determination

In general, the signal described by Eq. (20) will not only depend
on the relative angle between the two wave vectors but also on
their absolute orientations relative to that of the pores. It is true
that a signal difference between a parallel and an orthogonal orien-
tation of the wave vectors indicates anisotropic cells. But the dif-
ference varies with the wave vector’s absolute orientations and
may even vanish, i.e. in case of equal signals for parallel and
orthogonal wave vectors it must not be concluded that no micro-
scopic anisotropy is present. Thus, this difference is not a reliable
measure of the pore’s anisotropy. This is very similar to standard
diffusion-tensor acquisitions where from the difference of the dif-
fusion coefficients in three orthogonal directions only a lower limit
of the tensor’s anisotropy can be estimated and all diffusion coef-
ficients can be equal even in the presence of anisotropic diffusion.

A reliable measure of the cell or microscopic anisotropy, needs
to (i) be based on the fourth order signal contributions, (ii) be rota-
tionally invariant, (iii) be assessable by a limited number of acqui-
sitions, i.e. wave vector orientation combinations, and should (iv)
depend on the pores anisotropy or eccentricity but not on its size.
These requirements are in line with the properties of diffusion-ten-
sor anisotropy measures.

As a first approach, IMA according to

IMA ¼
3
2

X3

k¼1

eRkk �
1
2

X3

k;l¼1

eRkl þ
3
4

X6

m¼4

eRmm ð23Þ

is considered which due to the symmetry of eR is equivalent to

IMA ¼
X3

k¼1

eRkk �
X3

k;l¼1
k<l

eRkl þ
3
4

X6

m¼4

eRmm ð24Þ

i.e. involves nine different elements of eR.
Using the definition of eR in Eq. (17) that was obtained for an

ensemble of identical pores with a single orientation, it is identical
to IA given by

IA ¼
X3

k¼1

R2
kk �

X3

k;l¼1
k<l

RkkRll þ 3
X3

k;l¼1
k<l

R2
kl ð25Þ

which is equivalent to

IA ¼
X3

k¼1

Rkk

 !2

� 3
X3

k;l¼1
k<l

RkkRll þ 3
X3

k;l¼1
k<l

R2
kl

¼ Tr R
� �2

� 3
X3

k;l¼1
k<l

RkkRll � R2
kl

� �
: ð26Þ

Thus, IA is the sum of the squared trace (invariant I1) and a multiple
of the surface element (invariant I2) [21] of the tensor R [12] and as
such is also rotationally invariant. This also holds for IMA, so far
strictly only for a single pore orientation, but it will be shown later
that it is in general rotationally invariant, too.
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IMA can be determined from 15 diffusion-weighted measure-
ments with different orientations of the two wave vectors, e.g.
according to

IMA ¼
X3

k¼1

Mk;k �
X3

k;l¼1
k<l

Mk;l þ
3
2

X3

k;l¼1
k<l

1
2

Mkl;kl þ
1
2

Mk�l;k�l �Mkl;k�l

� �
ð27Þ

where Mk;l is the signal obtained with the two wave vectors along
the axes ek and el, and Mij;kl that obtained with the two wave vec-
tors along the diagonals defined by ei þ ej and ek þ el. Thus, the
15 wave vector combinations of Eq. (27) cover (i) three parallel
orientations along each axis plus (ii) four combinations in each
kl-plane with (iia) two orthogonal and (iib) two parallel orientations
(3 � 4 = 12). For the xy-plane the ‘‘planar” orientations are given by
(first � second wave vector) (iia) ð1;0;0ÞT � ð0;1;0ÞT and
ð1;1;0ÞT=

ffiffiffi
2
p
� ð1;�1;0ÞT=

ffiffiffi
2
p

, and (iib) ð1;1;0ÞT=
ffiffiffi
2
p
� ð1;1; 0ÞT=

ffiffiffi
2
p

and ð1;�1;0ÞT=
ffiffiffi
2
p
� ð1;�1; 0ÞT=

ffiffiffi
2
p

. In the other two planes, the
components must be permuted appropriately.

With the signal combination of Eq. (27), all elements of eS and
those of eR that do not contribute to IMA but in general appear in
the signal of Eq. (20), are eliminated yielding only the desired
expression of the fourth order terms according to Eq. (23). Further-
more, the constant and the second order terms of Eq. (20) vanish,
too. Thus, a limited set of measurements is sufficient to determine
IMA experimentally.

It should be noted that the number of measurements is lower
than the number of different elements of eU, i.e. not all elements
of eU need to be determined to obtain IMA.
2.6. Microscopic anisotropy measures

From Eq. (25) it is seen that IA vanishes for isotropic cells be-
cause in this case Rkk ¼ const and Rkl ¼ 0 for k–l. This can also be
seen in Eq. (27) as for isotropic cells all signals Mk;l and Mij;kl are
identical and appear equally weighted with positive and negative
sign. Thereby, all positive signs refer to signals obtained with par-
allel wave vector orientations while all those with a negative sign
correspond to orthogonal wave vector orientations. Because
according to Mitra [1] and Cheng and Cory [14] a signal difference
occurs between parallel and orthogonal wave vector orientations
for anisotropic cells, IA is expected to be sensitive to the cell
anisotropy.

This is obvious if IA is considered in the eigenvector coordinate
system where Rkl ¼ 0 for k–l and Rkk ¼ Rk with the eigenvalues Rk.
Eq. (25) then is equivalent to

IA ¼
X3

k¼1

R2
k �

X3

k;l¼1
k<l

RkRl ¼
1
2

X3

k;l¼1
k<l

Rk � Rlð Þ2 ð28Þ

i.e. IA is zero for isotropic cells ðRk ¼ RlÞ and positive if Rk–Rl for any
k–l (anisotropic cells). For the example of a one-dimensional pore
with length 2r that can be regarded as an ellipsoid with semiaxes
of 0, 0, and r and represents the ‘‘most anisotropic” case, an IA value
of 1

9 r4 is obtained.
IA increases with the pore size for a given pore shape, e.g. mul-

tiplying all size parameters with a constant factor f yields an f 4-
fold IA. For a measure of the microscopic anisotropy, this size
dependency is not desired and must be eliminated by an appropri-
ate normalization. This can be achieved with the tensor R that
describes the second order signal decay for each wave vector. Its
elements can be obtained, for instance, using an appropriate wave
vector orientation scheme (e.g. see the ‘‘tensor” scheme described
below) or involving additional acquisitions with a different q value
to separate second and fourth order contributions.
The simplest approach to a size measure is the (rotationally
invariant) trace of R given by

P
kRkk or

P
kRk, another invariant of-

ten used is
ffiffiffiffiffiffiffiffiffiffiffiffiP

kR2
k

q
, the denominator in the definition of the frac-

tional anisotropy [22]. Without loss of generality, the following
considerations will focus on TrðRÞ for the size normalization. But
it should be kept in mind that other normalization approaches
are possible and behave equivalently.

Thus, a dimensionless measure MA of the microscopic anisot-
ropy can be defined as

MA :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

X3

k¼1
eRkk �

1
2

X3

k;l¼1
eRkl þ

3
4

X6

m¼4
eRmm

r X3

k¼1

Rkk

,

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

k¼1
eRkk �

X3
k;l¼1
k<l

eRkl þ
3
4

X6

m¼4
eRmm

s X3

k¼1

Rkk

,
: ð29Þ

It is composed of the square root of IMA which is sensitive to the
microscopic anisotropy in the numerator and the trace of the tensor
R which increases with the pore size and eliminates the size depen-
dency present in IMA. The square root in the numerator is applied to
obtain a dimensionless measure.

For an ensemble of identical pores with a single orientation, Eqs.
(25) and (28) are valid and MA is equivalent to the anisotropy A
defined as

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

k¼1
R2

kk �
X3

k;l¼1
k<l

RkkRll þ 3
X3

k;l¼1
k<l

R2
kl

r X3

k¼1

Rkk

,
ð30Þ

and, in terms of the eigenvalues,

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

X3
k;l¼1
k<l

Rk � Rlð Þ2
s X3

k¼1

Rk

,
ð31Þ

respectively. For the example of ellipsoidal pores with semiaxes a, b,
and c, Eq. (31) yields

Aelli ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
� �2

þ a2 � c2ð Þ2 þ b2 � c2
� �2

r
ffiffiffi
2
p

a2 þ b2 þ c2
� � : ð32Þ

This also shows that the MA value for an ellipsoid with semiaxes 0,
0, and r now is 1, independent of r.

For a single pore orientation there are parallels between the de-
fined MA and anisotropy measures known from standard (single-
wave-vector) diffusion tensor imaging that are considered in the
next section.

2.7. Comparison with anisotropy measures of the diffusion tensor

Eq. (31) is equivalent to

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k Rk � hRið Þ2

q
ffiffiffi
6
p
hRi

ð33Þ

with hRi ¼ 1
3 TrðRÞ ¼ 1

3

P
kRk. This notation shows the similarity to

the (macroscopic) anisotropy measure RA [22], the relative anisot-
ropy, that is derived from the second order diffusion tensor accord-
ing to

RA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k Dk � hDið Þ2

q
ffiffiffi
6
p
hDi

ð34Þ

with the eigenvalues of the diffusion tensor Dk and hDi ¼ 1
3

P
kDk.

Note that the diffusion coefficients Dk are proportional to the mean
squared displacement, i.e. the elements of Eq. (34) can be re-written
to be quadratic in r like those of Eq. (33).
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A modified definition of the microscopic anisotropy measure

that uses
ffiffiffiffiffiffiffiffiffiffiffiffiP

kR2
k

q
rather than

P
kRk for the size normalization (as

mentioned earlier)

AF ¼ A
P

kRkkffiffiffiffiffiffiffiffiffiffiffiffiP
kR2

k

q ð35Þ

yields

AF ¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k Rk � hRið Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiP

kR2
k

q ð36Þ

which corresponds to the diffusion tensor’s fractional anisotropy
[22]

FA ¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k Dk � hDið Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

kD2
k

q : ð37Þ

This means that AðFÞ which is identical to MA for the special case of a
single pore orientation, can be considered as a measure of the mac-
roscopic anisotropy.

However, two things should be emphasized. First, RA and FA re-
fer to the diffusion tensor that can be considered to be equivalent
to the displacement ellipsoid, while AðFÞ (and the MA measures)
have been derived to estimate the pore geometry directly. Second,
the MA measures represent a more general description of diffusion
anisotropy because they reduce to AðFÞ, and thus RA- and FA-like
expressions, only if an ensemble of identical pores with a single
orientation is considered as assumed for Eq. (30). In this case, the
microscopic and macroscopic anisotropy are identical. However,
for multiple ensembles AðFÞ, and RA as well as FA, refer to the mac-
roscopic anisotropy while MA characterizes the microscopic
anisotropy. Thus, the values of the MA measures differ in general
from those of AðFÞ (or RA and FA) and, for instance, do not vanish
in samples with an isotropic orientation distribution of anisotropic
cells as will be shown in the next sections.

2.8. Multiple pore ensembles

It could be argued that considering the fourth order signal con-
tributions in Eq. (20) is not required in practice because all terms
appearing in IA according to Eq. (25) are derived from the tensor
elements of R that describe the signal decay in the second order.
This is true as long as only a single pore ensemble is assumed, as
has been done for the derivation of Eq. (25), which also means that
the macroscopic and the microscopic anisotropy are identical. Tak-
ing multiple pore ensembles, e.g. with different orientations, into
account introduces a crucial difference between the second and
fourth order signal contributions that causes the discrepancy be-
tween the microscopic and macroscopic anisotropy measures.

Assuming different ensembles, each with a relative weight of pj

ð
P

jpj ¼ 1Þ, the signal of the pore mixture is obtained by adding up
the contributions of the individual pore ensembles. This means
that Eq. (20) remains valid if the weighted sums are used for the
tensors involved, i.e.

eTa ¼
X

j

pj
eTaj

eU ¼X
j

pj
eUj

ð38Þ

and
R ¼
X

j

pjRj

eR ¼X
j

pj
eR j

eS ¼X
j

pj
eSj

ð39Þ

where eTa j, eUj, Rj, eR j, and eSj are the tensors for the individual ensem-
bles. This also holds for the definitions of IMA and MA, i.e. Eqs. (23),
(24), and (29). Furthermore, because IMA is linear in the elements ofeR,

IMA ¼
X

j

pjIMA;j ð40Þ

and it can be concluded that IMA as a sum of rotational invariants it-
self is also rotationally invariant in case of multiple pore ensembles.

Modeling the measured signal according to Eq. (20) now yields
the averaged tensor elements

Rkl ¼
X

j

pjRj;kl ð41Þ

with Rj;kl being the kl-element of Rj and, for k; l < 4,eRkl ¼
X

j

pj
eRj;kl ¼

X
j

pjRj;kkRj;ll ð42Þ

which yields the important difference between IMA and IA:eRkl ¼
X

j

pjRj;kkRj;ll–
X

j

pjRj;kk �
X

j

pjRj;kk ¼ RkkRll ð43Þ

For eRkl, used in IMA, the elements of the individual Rj are multiplied
prior to averaging over multiple ensembles and, thus, cannot be ob-
tained from the (averaged) Rkl (used for IA) anymore as for a single
pore ensemble. Consequently, the eRkl in general must be considered
as independent variables. This is why the definition of the micro-
scopic anisotropy measures is based on them (rather than on the
Rkl) and in general differs from the macroscopic anisotropy
measures.

This crucial difference can be demonstrated for a simple exam-
ple of one-dimensional pores, i.e. ellipsoidal pores with semiaxes
of 0, 0, and r and a constant spin density qðrÞ ¼ q. For a single
ensemble ðp1 ¼ 1Þ with pores oriented along x, the only element
of R that does not vanish is R11 ¼ 1

3 r2. This yields a MA offfiffiffiffiffiffiffi
1
9 r4

q
=ð13 r2Þ ¼ 1 that is identical to the macroscopic value (A). Con-

sidering two ensembles oriented along x and y with identical
weighting factors pj ¼ 1

2, yields the same value for MAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

2
1
9 r4

q
=ð13 r2Þ ¼ 1 but because R11 ¼ R22 ¼ 1

6 r2, A yieldsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

36 r4 � 1
36 r4

q
=ð13 r2Þ ¼ 1

2, i.e. half the value. Adding a third ensem-

ble along z (pj ¼ 1
3) also does not change MA becauseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 � 1
3

1
9 r4

q
=ð13 r2Þ ¼ 1. But because now R11 ¼ R22 ¼ R33 ¼ 1

9 r2, the

macroscopic anisotropy A vanishes:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 1

81 r4 � 3 � 1
81 r4

q
=ð13 r2Þ ¼ 0.

2.9. Microscopic and macroscopic anisotropy

The anisotropy A defined according to Eq. (30) in general repre-
sents a measure of the macroscopic anisotropy that can be calcu-
lated from the elements of the second order tensor R. Thus, the
macroscopic anisotropy A and the microscopic anisotropy MA can
be determined from the same DWV experiment. This is interesting
as they describe diffusion anisotropy on different length scales (cell
vs. voxel scale), i.e. they consider complementary aspects of the
diffusion anisotropy. Their comparison therefore yields additional
information on the sample’s structure.
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The macroscopic anisotropy describes the direction preference
of the diffusion averaged over the voxel. But, for instance, it does
not distinguish between densely packed cells with an almost isotro-
pic orientation distribution and a low density of anisotropic cells
with a single orientation. Thus, the reason for a reduced macro-
scopic anisotropy could be a lower density of anisotropic cells or a
more incoherent orientation of the cells. The microscopic anisot-
ropy reflects the cell geometry but is independent from the cell’s
orientation distribution. Thus, it depends on the density of aniso-
tropic cells but not on their orientation coherence on the voxel level.

Combining the information of both anisotropy measures allows
to detect and distinguish between a reduced orientation coherence
or a reduced density of anisotropic cells. This can, for instance, be
achieved by simply considering the ratio of the anisotropy mea-
sures RA=MA (if RA is the preferred measure of the macroscopic
anisotropy). It represents the ‘‘macroscopicity” of the diffusion
anisotropy, i.e. the fraction of the anisotropy present on a micro-
scopic scale that is also visible on the voxel scale. This reflects
the degree of coherence of the orientation of the anisotropic pores.
It yields 1 for a single cell orientation and 0 for an isotropic one.
Similarly, a ‘‘microscopicity” could be defined as 1� RA=MA that
describes the degree of diffusion anisotropy present on a micro-
scopic level but hidden on a macroscopic scale due to a (partially)
incoherent orientation of the cells.

2.10. Isotropic orientation distribution

As a special case of multiple pore ensembles, an isotropic orien-
tation distribution of identical cells will now be considered. Previ-
ous studies reported a signal difference between parallel and
orthogonal wave vectors in this case for ellipsoidal cells [1,14]
but so far, no general expression has been presented that (i)
describes the dependency of the signal on the angle between the
two wave vectors or (ii) the modulation amplitude for a general
cell shape. Thus, the results of the previous sections were consid-
ered for an isotropic orientation distribution in order to derive such
a general expression (see Appendix).

The signal equation obtained for q1 ¼ q2 ¼ q is given by

Misoðq; hÞ / 1� 2
3
hR2iq2

þ 1
30

3hR4i þ 3hRkkRlli þ 4hR2
kli

� �
þ 1

15
hR2

kli cos 2h


 �
q4

ð44Þ

The signal modulation with the angle between the two wave vec-
tors originates from the off-diagonal eR matrices and is described
by cos 2h which yields the difference between parallel and orthog-
onal wave vector orientations. The amplitude of the modulation is
proportional to hR2

kli or hR2
kki � hRkkRlli, i.e. to the square of the MA gi-

ven by (see Appendix)

MA /
ffiffiffiffiffiffiffiffiffiffi
hR2

kli
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
hR2

kki � hRkkRlli
� �r

ð45Þ

It vanishes for isotropic cells where Rkk ¼ Rll for arbitrary k and l and
hR2

kli is 0.
Considering the special case of ellipsoidal pores with semiaxes

of a, a, and b and

Raa ¼
1
5

a2; Rbb ¼
1
5

b2 ð46Þ

yields

2
3
hR2i ¼ 2

3
ð2Raa þ RbbÞ ¼

4
15

a2 þ 2
15

b2 ð47Þ

for the second order term and
1
15
hR2

kli ¼
1

15

X
k

R2
kk �

X
k;lk<l

RkkRll

 !

¼ 1
15

2Raa þ Rbb � R2
aa � 2RaaRbb

� �
¼ 1

15
ðRaa � RbbÞ2

¼ 1
375
ða2 � b2Þ2 ð48Þ

for the modulation amplitude which corresponds to a signal differ-
ence between parallel and orthogonal wave vector orientations of

Misoðq;0Þ �Miso q;
p
2

� �
¼ 2

375
ða2 � b2Þ2 ð49Þ

and is consistent with Eq. (4) derived by Cheng and Cory.
3. Experimental

To evaluate the presented tensor approach and the microscopic
anisotropy measure derived from it, Monte-Carlo simulations were
performed. A self-written IDL algorithm (version 7.0, ITT Visual
Information Solutions, Boulder, USA) described in more detail in
[12] was used to simulate fully restricted diffusion of spins in iso-
lated pores, calculate their averaged signal present in a DWV
experiment, and analyze it with respect to the signal equation
and the MA according to Eq. (20) and Eq. (29), respectively. For
each spin a random starting point within the pore was determined
and for every time unit a random, Gaussian displacement in a ran-
dom direction was accumulated. At the pore boundaries, diffuse
reflection was assumed. Identical wave vector amplitudes were
used for both wave vectors ðq1 ¼ q2Þ for all simulations. Relaxation
effects were neglected.

A pool of 10,000 spins was investigated with a time unit of
dt = 1 ls. To approach the assumptions underlying the theoretical
considerations, i.e. d! 0 and sm;D� sD for the diffusion coeffi-
cient used (2.0 � 10�3 mm2 s�1), a gradient pulse length of one time
unit and mixing times sm and diffusion times D of 40 ms were
used. For pores with radii of 1.5, 2.0, and 2.5 lm, sm=sD and D=sD

then are about 53.3, 30.0, and 19.2, respectively.
Different direction schemes were used for the orientations of

the two wave vectors to investigate the different aspects of the the-
oretical considerations. As the simplest approach, the so-called
‘‘circle” scheme was applied in order to (i) demonstrate the vari-
ability of signal modulations with the angle between the two wave
vectors that can be present in samples with non-isotropic orienta-
tion distribution, and (ii) confirm the feasibility of Eq. (20) to
describe all modulation curves observed consistently. Thereby,
the direction of one of the two wave vectors was fixed while the
other one uniformly sampled a circle within a given plane that
includes the first wave vector, with 72 directions. A Levenberg–
Marquardt algorithm was applied to fit the individual data sets
to Eq. (20) independently and estimate the pore parameters within
the circle plane.

In the so-called ‘‘isotropic” direction scheme the directions of
both wave vectors were uniformly distributed over a sphere. For
each wave vector, 36 circles of latitude were defined in steps of
5�. On each circle, equidistant directions were defined with the
number of directions on a circle being proportional to its circum-
ference and a maximum number of 72 on the equator (correspond-
ing to a separation of 5�). This approach yields a total number of
1651 directions for the first wave vector. For the second wave vec-
tor, these directions plus their antipodes were used, i.e. in total
1651 � 3302 = 5,451,602 combinations were applied.

The intention of this direction scheme was twofold. First, aver-
aging all signals obtained with the same angle h enclosed by any of
the first and any of the second wave vectors yields the (orienta-
tion-independent) signal obtained for an isotropic orientation
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Fig. 2. Simulated MR signals (symbols) and corresponding fits to the tensor
equation (solid lines) vs. the angle h between the two wave vectors for the circle
direction scheme where one wave vector is fixed and the other samples a circle. The
simulations were performed for spherical pores (triangles) with radii of 1.5, 1.8, and
2.5 lm and parallel oriented ellipsoidal pores (diamonds) with semiaxes of 1.5, 1.5,
and 2.5 lm. Several circle planes with different orientations of the first wave vector
were simulated for the ellipsoidal pores. A single pore orientation was assumed for
the fits.
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distribution as pointed out earlier [12]. Thus, the validity of Eq.
(44) can be checked. In the averaging step, h was rounded to mul-
tiples of 5� to ensure that the averaging was performed over a suf-
ficiently large range of different absolute wave vector orientations.
Second, every combination simulated can be considered as an indi-
vidual experiment for the given absolute wave vector orientations.
Thus, Eq. (20) can be fitted to all simulation results testing the per-
formance of this equation to describe the simulated signals over a
large range of orientations with a single set of R and eU, i.e. eR and eS.
For both approaches, a Levenberg–Marquardt algorithm was used
to fit the underlying equations.

Because Eq. (20) aims to describe the signal to fourth order with
in general 42 parameters, six of them for the second order, 36 for
the fourth order, a reduced direction scheme, the so-called ‘‘tensor”
scheme was applied. It is based on the nine directions used in Eq.
(27), i.e. three directions along the axes and six non-collinear diag-
onals within the three coordinate planes, and involves the 45 dif-
ferent combinations obtained when neglecting the order of the
directions in the combination. These combinations are expected
to be sufficient to derive the full tensor information. The simulated
signals were fitted to Eq. (20) using a Levenberg–Marquardt algo-
rithm to obtain all tensor elements.

Furthermore, a so-called ‘‘anisotropy” direction scheme was
used consisting of the 15 direction combinations of Eq. (27). This
scheme represents a subset of the tensor scheme and has the min-
imum number of directions to calculate MA if the pore size is
known. From the corresponding simulations, MA can be calculated
analytically. One thousand two hundred rotations of this scheme
were generated by applying random azimuthal and longitudinal
rotation angles and were investigated to demonstrate the rota-
tional invariance of MA.

In general, the fits to Eq. (20) were based on the general expres-
sion involving multiple pore ensembles, i.e. the eRkl were assumed
to be independent of the Rkl. This case will be referred to as the
general tensor equation and yields 42 independent variables, six
in the second order and 36 in the fourth order contributions of
Eq. (20), 15 of eS and 21 of eR. In the corresponding fits, the bound-
ary condition eRkl P 0 for k; l 6 3 was used that is a consequence of
Rkk P 0 and R2

kl P 0. For some fits to simulations with a single pore
ensemble, the simplified tensor equation was used where the eRkl

were defined by the elements of R according to Eq. (17) yielding
only 21 parameters, six elements Rkl, present in the second (R)
and fourth order (eR), and the 15 different elements of eS.

The deviations of the pore-size parameters or tensor elements
that were determined from the fits, from their nominal values that
can be calculated analytically, are given as a percentage. For those
parameters or elements that have a nominal value of zero, the per-
centage is given relative to the non-vanishing nominal parameter
or element with the lowest absolute value.
4. Results

In Fig. 2, the simulation results for the circle direction scheme
applied in several circle planes and with different directions of
the first wave vector are shown. As references, curves obtained
for spherical pores (triangles) with radii between 1.5 and 2.5 lm
are included. Some minor signal variations with h, the angle be-
tween the two wave vectors, are visible for the spherical pores that
similarly have been observed earlier [12] and may be caused by
rounding errors or the hidden algorithm of the random number
generator. For the large spherical pores, this modulation is slightly
reduced if a longer sm is used (data not shown). However, because
the modulations are neglectable, the sm used in the presented sim-
ulations was used throughout the manuscript in order to avoid
excessive simulation times.
For ellipsoidal cells (semiaxes 1.5, 1.5, and 2.5 lm) with a single
pore orientation the signal curves (diamonds) show pronounced
modulations with h. Some plots show a minimum signal for the
orthogonal wave vector orientation as expected for the anisotropy
effect, however, others have an intermediate value or even a max-
imum at an angle of 90� between the two wave vectors. This is due
to the fact that the signal amplitude for a single pore orientation
strongly depends on the orientation of the two wave vectors rela-
tive to the pores yielding a variety of modulation amplitudes and
phases. This holds for any other non-isotropic orientation distribu-
tion of anisotropic pores. As a consequence, two acquisitions with
parallel and orthogonal wave vector orientations will commonly
fail to determine the (microscopic) anisotropy reliably in the case
of non-isotropic orientation distributions and a more general ap-
proach is required.

The fits to the simplified tensor equation in the circle plane
(lines) are in good agreement with the simulations, the corre-
sponding pore-size parameters are within 1% and 5% of the nomi-
nal values for the spherical and ellipsoidal pores, respectively.
Thereby, a slight, but systematic underestimation is observed for
the ellipsoidal pores that has also been reported in previous studies
[12] and that was observed in most of the simulations performed
in this work. Most likely, these deviations are due to higher order
signal contributions that are not considered in the theoretical con-
siderations. However, the pore eccentricity, i.e. the ratio of the long
and short semiaxis, derived from the estimated diameters in the
circle planes could be determined with an accuracy of about 1%.

In Fig. 3, a subset of the simulation data obtained with the iso-
tropic direction scheme for parallel oriented ellipsoidal pore is pre-
sented. Each data point (diamond) represents the signal observed
for a certain orientation combination of the two wave vectors rel-
ative to the orientation of the ellipsoidal pore. Although only a
minor part of the data points is shown in Fig. 3, the fits (lines) to
Eq. (20) were based on all (about 5.4 million) data points using a
single parameter set. Thereby, the fit was performed either (i) un-
der the assumption of a single pore ensemble orientation, i.e. with
the 21 different parameters of R and eS and the elements of eR being
derived from the Rkl according to Eq. (17) (Fig. 3a), or (ii) for the
general case that takes multiple pore orientations into account
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Fig. 3. Simulated MR signal (diamonds) and fits to the tensor equation (solid lines)
for a subset covering 825 wave vector combinations (x axis) of the isotropic
direction scheme for parallel oriented ellipsoidal pores with semiaxes of 1.5, 1.5,
and 2.5 lm. Each data point represents the signal obtained for a certain combina-
tion of the wave vector orientations. The solid line represents the fit to all (more
than 5.4 million) combinations investigated to Eq. (20) either (a) assuming a single
pore orientation or (b) taking multiple pore orientations into account. For details
see text.
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Fig. 4. Simulated MR signal (symbols) and fit to the tensor equation (lines) for the
tensor direction scheme covering 45 orientation combinations of the wave vectors
(x axis) and ellipsoidal pores with semiaxes of 1.5, 1.5, and 2.5 lm. In (a), three
individual pore orientations (major semiaxis along x, y, or z) are shown, in (b) and
(c) equally weighted mixtures of pores with orientations along (b) two (x,y) or (c)
three orthogonal directions (x,y,z).
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by using eRkl as independent variables yielding 21 additional
parameters, i.e. 42 in total (Fig. 3b). Both fits approximate the sim-
ulated data very well and the underlying pore-size parameters are
in a good agreement with the nominal values with a maximum
deviation of about 5%. This demonstrates the feasibility of the
derived tensor equation to describe the signal for arbitrary pore
and wave vector orientations accurately even in the general case
that takes multiple pore orientations into account.

Because the signal behavior described by Eq. (20) in the general
case of multiple pore orientations (i.e. independent eRkl) is based on
42 different parameters, the tensor direction scheme covering 45
wave vector orientation combinations is expected to be sufficient
to determine all parameters describing the signal behavior. Simu-
lation results (symbols) for this scheme and ellipsoidal cells are
shown in Fig. 4 together with the fits to the tensor equation (solid
lines). In Fig. 4a, the results for three different orientations of the
pores, major semiaxis along x, y, and z, respectively, are presented.
Because with only nine different directions the sampling of the
wave vector orientations is quite sparse, the signal amplitudes
accumulate at a few different signal ‘‘levels”. As expected, the data
values seem to be identical for the different pore orientations but
appear at different wave vector orientations (see e.g. the minimum
signal value below 0.6). The large variations of the signal amplitude
are again due to the dependency of the signal amplitude on the
wave vector orientation relative to the pore orientation. The fits
to the general tensor equation (with 42 parameters) are in good
agreement with the simulated data and yield pore parameters that
differ by less than 1% between the different pore orientations and
are within 5% of the nominal values.

For Fig. 4b, a mixture of two of the pore orientations (along x
and y) with identical weightings was simulated. The modulation
amplitude is reduced but the fit to the general tensor equation is
again in good agreement with the simulated data and the fit
parameters are within 5% of the nominal values of the ensemble
mixture. This also holds for Fig. 4c, where a mixture of all three ori-
entations (x, y, and z) is considered and the signal variation with
the wave vector orientations is further reduced. Thus, it is demon-
strated that (i) the general tensor equation is also a good model for
the signal in the presence of multiple pore orientations and (ii) its
parameters can be estimated reliably from a reasonable and realiz-
able number of wave vector orientation combinations, e.g. the 45
of the tensor direction scheme.

Fig. 5 shows simulations for ellipsoidal pores with the anisot-
ropy direction scheme, i.e. the 15 direction combinations used in
Eq. (27). These combinations represent a minimum direction set
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Fig. 5. Simulated MR signals in ellipsoidal pores (semiaxes 1.5, 1.5, 2.5 lm) for the
wave vector orientations of the anisotropy direction scheme (x axis) and (a) single
pore orientations along three different directions and (b) equally weighted mixtures
of two (triangles) or three (squares) of these orientations.

# schema orientation
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A

Fig. 6. MA values determined from simulations with the anisotropy direction
scheme for parallel oriented ellipsoidal pores at the first 300 of 1200 different,
randomly chosen absolute orientations (x axis). Three different pore geometries are
shown with identical short semiaxes (1.5 and 1.5 lm) but different long semiaxis of
2.5 (squares), 2.35 (triangles), and 2.15 lm (diamonds) yielding nominal MA values
of about 0.371, 0.335, and 0.263 (lines), respectively. For details see text.

I A

eccentricity ε  

Fig. 7. Values of IA calculated from simulations with the anisotropy direction
scheme (symbols) for ellipsoidal pores with three different effective sizes and
various eccentricities. Thereby, one semiaxis was shortened while the other two
were prolonged such that hR2i remains constant (1.35 lm2, 0.60 lm2 and 0.15 lm2,
respectively). The theoretical curves are shown for comparison (dotted lines).
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required to determine a rotationally invariant measure of the pore
anisotropy (IMA). To calculate the size-independent MA a correction
for the pore size is required. In order to focus to the essential prop-
erty of MA, the description of the pore anisotropy, the nominal val-
ues of the pore size were used in this and the following
calculations but it should be kept in mind that this information
usually needs to be obtained experimentally as well.

In the different simulations presented in Fig. 5, the anisotropy
scheme was applied to ellipsoidal pores with different pore orien-
tations, three simulations with random single pore orientations
(Fig. 5a) and two with a mixture of two or three of these directions
(Fig. 5b). The signal range covered differs between the simulations
with single pore orientations. One data set (diamonds) exhibits in
general higher signal amplitude with a minimum signal amplitude
of about 0:655M0 while the other two yield minimum values of
about 0:55M0. However, the MA values calculated for these differ-
ent data sets (0.376, 0.377, and 0.379, respectively) are very similar
to the nominal value of 16

43 � 0:372, i.e. the maximum deviation is
below 2%.

For the mixtures (Fig. 5b), the signal variations are decreased as
their macroscopic anisotropy is reduced but the MA values ob-
tained from the simulations are very similar to those of the single
pore orientations (0.351 and 0.378, respectively) and within 6%
and 2% of the nominal value, respectively. This indicates that, as
expected from the theoretical considerations, the MA seems to be
a reasonable parameter to characterize the pore anisotropy even
in sample with non-isotropic orientation distributions and offers
information beyond that of macroscopic anisotropy measures.

To confirm the rotational invariance of the MA, simulations with
the anisotropy direction scheme were repeated for 1200 random,
single pore orientations and using three different eccentricities of
the ellipsoidal pores. The MA values obtained for the first 300
orientations are plotted in Fig. 6. Only minor variations of the MA
values are observed that occur for a limited number of pore orien-
tations. All values are within 4% of the nominal values (0.372,
0.327, and 0.263, respectively) and the mean values of all 1200
directions differ only by about 2.6% from the nominal values
(lines). Thus, the rotational invariance of the MA can be considered
to be confirmed.

In Fig. 7, IA values calculated from simulations with the anisot-
ropy direction scheme (symbols) are shown for ellipsoidal pores
with three different effective sizes and various eccentricities.
Thereby, one semiaxis was shortened while the other two were
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Fig. 8. Simulated MR signal (diamonds) vs. the angle h between the two wave
vectors for an isotropic orientation distribution of ellipsoidal pores with fixed short
semiaxes (1.5 and 1.5 lm) and a variable long semiaxis ranging from 1.5 to 7.5 lm
(top to bottom). The lines reflect the fits of the simulated data to the theoretical
result.
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prolonged such that the effective size as measured by hR2i remains
constant. This means that any variation of the IA is related to the
change of the pore eccentricity. In any case, the pore eccentricity

is given by � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=b2

q
where a and b are the short and long

semiaxes, respectively. The data are in good agreement with the
theoretical curve (dotted lines). Some deviations are observed for
low eccentricities but it should be noted that the absolute devia-
tions are small (typically below 0.005) and an � of 0.25 represents
almost isotropic pores with a difference between the long and
short semiaxes of only 3.2%. Thus, it is shown that the IA, and thus
the MA, can be derived for a large spectrum of pores and clearly is
attributed to the anisotropy effect.

Finally, an isotropic orientation distribution of ellipsoidal pores
was simulated (Fig. 8) in order to confirm Eq. (44). Again ellipsoidal
pores with different eccentricities were investigated. Increasing
the long semiaxis, yields a lower signal due to the increased pore
size but also a larger signal modulation amplitude which both is
consistent with the theory. The fits agree well with the simulated
data for the various eccentricities and their parameters deviate
by less than 5% from the nominal values.

5. Discussion

The signal equation presented by Mitra [1] for a DWV experi-
ment with a long mixing time has been evaluated in more detail
yielding a tensor equation in the fourth order of the wave vector
amplitude q. It describes the signal amplitude depending on the
two wave vectors for arbitrary cell shapes and orientation distribu-
tions with, in general, 42 variables, six in the second order and 36
in the fourth order. From this equation, an analytical expression of
the signal for an isotropic orientation distribution could be derived.
Based on these theoretical results, rotationally invariant measures
MA of the microscopic anisotropy were defined. In contrast to
anisotropy measures derived from standard, single wave vector
experiments, these measures reflect the pore geometry indepen-
dently of the present orientation distribution, i.e. also for macro-
scopically isotropic samples. The major expression used for the
definition of the MA measures can be obtained from 15 measure-
ments with different wave vector orientations covering parallel
and orthogonal alignments. However, to obtain values that solely
depend on the pore eccentricity, a correction for the pore size must
be performed. The signal curves obtained from numerical simula-
tions of diffusion in ellipsoidal pores were in good agreement with
the theoretical expectations. This also holds for the pore and MA
parameters derived from fits of the analytical expressions to the
simulated signal with a typical deviation of 5% or below.

It should be emphasized that the proposed direction scheme to
determine the MA measures is a first approach that neither is
expected to represent the only solution possible nor to be the opti-
mal solution in terms of insensitivity to noise or gradient pulse
durations required for the realization of the desired q values. How-
ever, regarding the long record on direction schemes for standard
diffusion tensor acquisitions, an optimization for DWV experi-
ments is beyond the scope of the present study. As a first step
for future improvements, a direction scheme should be defined
that allows the estimation of the MA with less than the 45 orienta-
tion combinations of the tensor direction scheme because only
twelve parameters, the three diagonal elements of R in the second
order and nine elements of eR in the fourth order, are required.
Although a simple approach would be to involve three acquisitions
with a second q value to identify the required second order
elements, this can be considered to be less appropriate because
unwanted signal variations with q may be present that for instance
are observed in standard, single-wave-vector diffusion-weighting
experiments of biological tissue [23–25].

The theoretical results provided can also be applied to mixtures
of pore ensembles with different sizes or geometries. A weighted
mean of the MA values can be expected to be observed is such
cases. Thus, although the DWV experiment is able to detect a
microscopic anisotropy in macroscopic isotropic samples, the sig-
nal averaging over the measurement volume or voxel still intro-
duces a bias that may be insolvable with the theoretical
framework presented.

Some minor angular modulation was observed for the simula-
tions of spherical pores. It can be conjectured that these deviations
are due to rounding errors that may not exactly yield (i) wave vec-
tors with identical magnitudes for the different orientations and
(ii) a perfectly spherical or ellipsoidal pore shape. It also may be
possible that the hidden algorithm of the random number genera-
tor also has some influence on these artifacts. However, these mod-
ulations were well below those observed for the ellipsoidal pores
and are not expected to have a significant influence on the results.
Furthermore, a slight, but systematic underestimation of the pore-
size parameters was observed which also has been found in previ-
ous studies [12,13]. But because the deviation is typically about 5%
or below, this is not considered to be a major problem.

Most likely these deviations are due to higher, i.e. sixth, order
contributions. A detailed analysis of the corresponding expressions
(sixth order terms of ~qðqÞ, inner- and inter-wave-vector products
of third order terms and second with fourth order terms of ~qðqÞ)
seems to be tedious but it is evident that only inter-wave-vector
products can introduce an (additional) angular modulation. These
contributions may distort the angular dependency and the differ-
ence between parallel and orthogonal wave vector orientations.
But as can be seen in the simulations performed, such effects are
not very pronounced (see Fig. 8). Even for a substantial signal de-
cay of, in average, more than 75% the fourth order curve fits the
simulated data quite well and reproduces the expected MA. Only
the slight deviations observed between the simulations and the
fit, e.g. for parallel and antiparallel wave vector orientations, may
be related to higher order contributions.

More relevant for real experiments seems to be the effect of
finite timing parameters, in particular of the gradient pulse dura-
tion that may be in the range of tenth of milliseconds on a
whole-body MR system. Previous simulations showed a decrease
of the signal difference between parallel and orthogonal wave vec-
tor orientations for longer pulse durations, e.g. by about 16% for
20 ms-pulses [11]. Taking into account that the MA is proportional
to the square root of the modulation amplitude, the systematic
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underestimation can be expected to be moderate even for whole-
body applications. However, if more detailed estimations of these
deviations are required, the multiple propagator method [26]
may provide a promising framework that also is able to consider
finite diffusion and mixing times. Initial results have confirmed
the underestimation of the anisotropy at finite pulse durations
for ellipsoidal pores [26].

In this context, it could be interesting to extend the presented
theory to the use of multiple concatenations of the two wave vectors
[13], i.e. to an experiment where more than two diffusion-weighting
periods with the first or the second wave vector are applied. Because
the diffusion weighting per wave vector can be reduced in such an
experiment, shorter gradient pulses can be achieved which may
help to improve the detectability of the signal modulation and the
accuracy of the derived anisotropy measure, in particular on
whole-body MR systems with their limited gradient amplitudes.

It should be noted that the tensor model presented can also be
applied to experiments with different wave vector amplitudes
ðq1–q2Þ, for instance 2D variants of the DWV experiment. In such
experiments the amplitude of both wave vectors is varied [3,27]
and typical off-diagonal patterns appear in the Laplace-trans-
formed spectrum if locally anisotropic diffusion is present
[27,28]. However, if a macroscopic anisotropy is present, the re-
sults of these experiments will depend on the sample’s orientation.
This problem has been solved for the experiment with constant
wave vector amplitudes on the basis of the presented tensor model
by using the anisotropy scheme for the wave vector orientations.
This approach may also be applicable to the 2D variants of the
experiment, i.e. the 15 orientation combinations of the anisotropy
scheme could be expected to be, if not the solution, at least a good
starting point to obtain orientation-independent results in macro-
scopically anisotropic samples.

Although the DWV experiment with long mixing times is a
promising approach, other methods to assess the diffusion anisot-
ropy on a microscopic level should be kept in mind. First, it can be
expected that higher order terms in the DWV experiment with
short mixing times may also be sensitive to the microscopic diffu-
sion anisotropy. Corresponding experiments can be realized with
shorter echo times which would yield an improved signal-to-noise
ration, however, it remains to be clarified whether the anisotropy-
related modulation amplitude is comparable to the experiment
with long mixing times. Furthermore, such an anisotropy-related
modulation needs to be detected in a strongly modulated back-
ground due to the pore-size dependent second order term that is
proportional to cos h.
6. Conclusions

A tensor approach to double-wave-vector diffusion-weighting
experiments with long mixing times has been presented that de-
scribes the signal in the general case of arbitrary cell or pore shapes
and orientation distributions. From these equations, a rotationally
invariant measure of the microscopic anisotropy can be derived
that represents the pore anisotropy independent of the pore orien-
tation distribution and can be determined from a few measure-
ments with different orientations of the two wave vectors. Thus,
the presented results may help to improve the reliability and quan-
tifiability of double-wave-vector diffusion-weighting experiments
that aim to determine pore or cell eccentricities.
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Appendix

Applying Eq. (38) and (39) to an isotropic orientation distribu-
tion means that each element of the effective tensors needs to be
averaged over all possible orientations W0 of the cell, e.g.

Riso ¼
Z

W
RW0 dW0

Z
W

dW0
�

ðA:1Þ

where RW0 is the tensor R for the orientation W0. It should be noted
that W0 uniquely defines the orientations of all eigenvectors of R and
not only that corresponding to the largest eigenvalue. It therefore is
defined by the three Euler angles that describe the relative orienta-
tions of two coordinate systems. Riso can be easily obtained [12] and
is given by

Riso ¼
1
3

hR2i 0 0
0 hR2i 0
0 0 hR2i

0B@
1CA ðA:2Þ

with hR2i ¼
P

kRkk ¼
P

kRk ¼
R

pore r2dr. Thus, the second order term

in Eq. (20) reduces to � 2
3 hR

2iq2 for an isotropic orientation distribu-
tion. Furthermore, it is obvious that the anisotropy A defined in Eq.
(30) vanishes for Riso.

The calculation of eRiso is, although straightforward, more te-
dious and will not be reproduced in detail here. Without loss of
generality, it can be assumed that the orientations W0 are consid-
ered relative to the eigenvector coordinate system of R which
means that all elements of R W0 can be described by the three Rii

and the three Euler angles. eRiso then is given by

eRiso ¼
1

15

hR2
kki hRkkRlli hRkkRlli 0 0 0

hRkkRlli hR2
kki hRkkRlli 0 0 0

hRkkRlli hRkkRlli hR2
kki 0 0 0

0 0 0 4hR2
kli 0 0

0 0 0 0 4hR2
kli 0

0 0 0 0 0 4hR2
kli

0BBBBBBBBBB@

1CCCCCCCCCCA
ðA:3Þ

with

hR2
kki ¼

Z
W

R2
W0 ;11 dW0 ¼ 2

X
k

R2
kk þ

X
k;l

RkkRll ¼ 3
X

k

R2
kk þ 2

X
k;l
k<l

RkkRll

hRkkRlli ¼
Z

W
RW0 ;11RW0 ;22 dW0 ¼ �

X
k

R2
kk þ 2

X
k;l

RkkRll

¼
X

k

R2
kk þ 4

X
k;l
k<l

RkkRll

hR2
kli ¼

Z
W

R2
W0 ;12 dW0 ¼ 3

2

X
k

R2
kk �

1
2

X
k;l

RkkRll ¼
X

k

R2
kk �

X
k;l
k<l

RkkRll

ðA:4Þ

i.e. (i) all elements eRiso;kl with k–l and maxðk; lÞ > 3 vanish and (ii)
there are only three different elements. Both findings can also be
derived considering the fact that eRiso must be invariant under any
rotation.

In Eq. (A.4) it can be seen that the three different elements ofeRiso are not independent, e.g.

hR2
kki ¼ hRkkRlli þ 2hR2

kli; ðA:5Þ

and eR iso can be re-written to
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eRiso ¼
1

15
hRkkRllieP1 þ

2
15
hR2

klieP2 ðA:6Þ

when defining a 3� 3 matrix E with Eij ¼ 1 and the 6� 6 matrices

eP1 ¼
E 0
0 0

 !

eP2 ¼
1 0
0 21

 ! ðA:7Þ

Because

~qT
m
eP1 ~qT

l ¼ qm � qmð Þ ql � ql

� �
¼ q4 ðA:8Þ

and

~qT
m
eP2 ~qT

l ¼ qm � ql

� �2
¼ q4 cos2 h ðA:9Þ

for q1 ¼ q2 ¼ q and cos h ¼ qm � ql=q2, i.e. h being the angle between
the two wave vectors, the signal contribution related to eRiso in Eq.
(20) yields

eQ T
3eRiso 6eRiso

6eRiso 3eRiso

0@ 1AeQ ¼ 1
5
hRkkRlliq4 þ 2hR2

kliq4
� �

þ 2
5
hRkkRlliq4 þ 2hR2

kliq4 cos2 h
� �

þ 2
5
hRkkRlliq4 þ 2hR2

kliq4 cos2 h
� �

þ 1
5
hRkkRlliq4 þ 2hR2

kliq4
� �

¼ 6
5
hRkkRlliq4

þ 4
5
hR2

kliq4ð2þ cos 2hÞ

Thus, a dependency of the signal on the angle h between the two
wave vectors with cos 2h is obtained.

Analogously, eSiso can be calculated yielding

eSiso ¼
1

15

hSkkkki hSkklli hSkklli 0 0 0

hSkklli hSkkkki hSkklli 0 0 0

hSkklli hSkklli hSkkkki 0 0 0

0 0 0 4hSkklli 0 0

0 0 0 0 4hSkklli 0

0 0 0 0 0 4hSkklli

0BBBBBBBBBB@

1CCCCCCCCCCA
ðA:11Þ

with hSkkkki ¼ 3hR4i, hR4i ¼
R

r4 dr, and hSkklli ¼ hR4i. Thus,

eSiso ¼
1
5
hR4i eP1 þ 2eP2

� �
ðA:12Þ

and the fourth order signal contribution related to eSiso can be writ-
ten as

eQ T
eSiso 0

0 eSiso

0@ 1AeQ ¼ 6
5
hR4iq4 ðA:13Þ

In summary, the signal for an isotropic orientation distribution
of the cells and q1 ¼ q2 ¼ q can be written as

Misoðq; hÞ / 1� 2
3
hR2iq2

þ 1
30

3hR4i þ 3hRkkRlli þ 4hR2
kli

� �
þ 1

15
hR2

kli cos 2h


 �
q4

¼ 1� 2
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30
3hR4i þ 2hR2

kki þ hRkkRlli
h

þ hR2
kki � hRkkRlli
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cos 2h

i
q4
MA for an isotropic orientation distribution, i.e. with eRiso

according to Eqs. (29) and (A.3), yields

MA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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X
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k
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which is identical to the value that would be obtained for a single
pore orientation (Rkl ¼ 0 for k–l and W0 ¼ 0, i.e. in the chosen coor-
dinate system). Furthermore, taking the relationship of Eq. (A.5)
into account, it can be seen that it is proportional to the square root
of the modulation amplitude of Eq. (44):

MA /
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